# Weak Arithmetics and Kripke Models<sup>1</sup>

# Morteza Moniri

Institute for Studies in Theoretical Physics and Mathematics

P.O. Box 19395-5746, Tehran, Iran

email: ezmoniri@ipm.ir

#### Abstract

In the first section of this paper we show that  $i\Pi_1 \equiv W \neg \neg l\Pi_1$ . In the second section of the paper, we show that for equivalence of forcing and satisfaction of  $\Pi_m$ -formulas in a linear Kripke model deciding  $\Delta_0$ -formulas, it is necessary and sufficient that the model be  $\Sigma_m$ -elementary. This implies that if a linear Kripke model forces  $PEM_{\text{prenex}}$ , then it forces PEM. We also show that, for each  $n \ge 1$ ,  $i\Phi_n$  does not prove  $\mathcal{H}(I\Pi_n)$ . Here,  $\Phi_n$ 's are Burr's fragments of HA.

2000 Mathematics Subject Classification: 03F30, 03F55, 03H15.

Key words and phrases: Fragments of Heyting Arithmetic, Kripke models

### 0. Preliminaries

We fix the language  $L = \{+, \cdot, <, 0, 1\}$ . The principle PEM (some of whose restrictions will appear below) of Excluded Middle is  $\forall \overline{x}(\varphi(\overline{x}) \lor \neg \varphi(\overline{x}))$ .

Heything arithmetic HA and its fragments  $(PA^{-})^{i}$ , iop, lop,  $i\Delta_{0}$ ,  $i\Sigma_{n}$  and  $i\Pi_{n}$ ,  $n \geq 1$ , are the intuitionistic counterparts of first order Peano Arithmetic PA and its fragments  $PA^{-}$ , Iop, Lop,  $I\Delta_{0}$ ,  $I\Sigma_{n}$  and  $I\Pi_{n}$ . More generally for any set  $\Gamma$  of formulas we will use notations such as  $i\Gamma$  and  $l\Gamma$  in the same manner.  $\neg\Gamma$  is the class of formulas of the form  $\neg\varphi$  with  $\varphi \in \Gamma$ .

By  $W \neg \neg LNP$ , we mean the scheme  $\forall \overline{y} \neg \neg (\exists x \varphi(x, \overline{y}) \rightarrow \exists x (\varphi(x, \overline{y}) \land \forall z < x \neg \varphi(z, \overline{y})))).$ 

We use the usual terminology about Kripke structures as in [TD]. Here we mention two facts about Kripke models. The proofs are straightforward (see [AM]).

**Fact 0.1** Suppose  $\alpha$  is a node of a Kripke model and  $\varphi$  is an  $L_{\alpha}$ -sentence:

1)  $\alpha \Vdash \varphi$  iff  $\beta \Vdash \varphi$  for each  $\beta \ge \alpha$ .

<sup>&</sup>lt;sup>1</sup>This version corrects an error in the journal version.

2)  $\alpha \Vdash \neg \varphi$  iff  $\beta \nvDash \varphi$  for each  $\beta \ge \alpha$ .

3)  $\alpha \Vdash \neg \neg \varphi$  iff for each  $\beta \ge \alpha$  there exists  $\gamma \ge \beta$  such that  $\gamma \Vdash \varphi$ .

**Fact 0.2** Suppose  $\mathcal{K} \Vdash (PA^-)^i$  (resp.  $\mathcal{K} \Vdash i\Delta_0$ ) and  $\varphi \in \exists_1$  (resp.  $\varphi \in \Sigma_1$ ). Then for each  $\alpha \in K$ , we have:

$$\alpha \Vdash \varphi \Leftrightarrow M_{\alpha} \vDash \varphi.$$

If  $\psi \in \forall_1$  (resp.  $\psi \in \Pi_1$ ) then:

$$\alpha \Vdash \psi \Leftrightarrow \forall \beta \ge \alpha \ M_\beta \vDash \psi.$$

Therefore, a  $\forall_1$  (resp.  $\Pi_1$ )-formula is forced at a node  $\alpha$  of a Kripke model of  $(PA^-)^i$  (resp.  $i\Delta_0$ ) if and only if it is satisfied in the union of the worlds in any path above  $\alpha$ .

#### 1. $i\Pi_1$ and its Kripke models

It was observed in [MM, Sec. 6] that, the second proof in [TD, p.131] for  $HA \vdash W \neg \neg LNP$  actually proves the following:

**Fact 1.1** If a fragment  $i\Gamma$  of HA is *m*-closed under the negative translation and  $I\Gamma \vdash L\Gamma$ , then for any formula  $\varphi(x,\overline{y}) \in \Gamma$ ,  $i\Gamma \vdash \forall \overline{y} \neg \neg (\exists x \varphi(x,\overline{y}) \rightarrow \exists x(\varphi(x,\overline{y}) \land \forall z < x \neg \varphi(z,\overline{y})))$ .

As a corollary, it was proved that  $iop \equiv W \neg \neg lop$  where  $W \neg \neg lop$  is the intuitionistic theory axiomatized by  $(PA^{-})^{i}$  plus  $W \neg \neg LNP$  on open formulas. Here we prove a similar result for  $i\Pi_{1}$ .

Note that by the above fact  $i\Pi_1 \vdash W \neg \neg l\Pi_1$ . Also, using  $i\Pi_1 \equiv i \neg \Pi_1$ , see [W2, Cor. 6], we have  $i\Pi_1 \vdash W \neg \neg l \neg \Pi_1$  where  $W \neg \neg l \neg \Pi_1$  is the intuitionistic theory axiomatized by  $i\Delta_0$  plus  $W \neg \neg LNP$  on  $\neg \Pi_1$  formulas.

**Proposition 1.2**  $W \neg \neg l \neg \Pi_1 \vdash i \Pi_1$ .

**Proof** Assume  $\mathcal{K} \Vdash W \neg \neg l \neg \Pi_1$ . Let  $\alpha \in \mathcal{K}$  does not force  $I_x \varphi(x, \overline{y})$ , for some  $\Pi_1$ -formula  $\varphi$ . Therefore, by the above facts, there will exist a node  $\gamma \ge \alpha$  with  $a, \overline{b} \in M_{\gamma}$  ( $\overline{b}$  of the same arity as  $\overline{y}$ ), such that

- (i)  $\gamma \Vdash \varphi(0, \overline{b}) \land \neg \varphi(a, \overline{b}),$
- (ii)  $\gamma \Vdash \forall x(\varphi(x,\overline{b}) \to \varphi(x+1,\overline{b})).$

By  $\mathcal{K} \Vdash W \neg \neg l \neg \Pi_1$ , we get  $\gamma \Vdash \neg \neg \exists x (\neg \varphi(x, \overline{b}) \land \forall z < x \varphi(z, \overline{b}))$ . Therefore, for some  $\delta \geq \gamma$  and some (necessarily nonzero)  $d \in M_{\delta}, \ \delta \Vdash \neg \varphi(d, \overline{b}) \land \forall z < d\varphi(z, \overline{b})$ . This is a contradiction to the fact that  $\gamma$  (and therefore,  $\delta$ ) forces  $\forall x(\varphi(x, \overline{b}) \rightarrow \varphi(x+1, \overline{b}))$ .  $\Box$ 

**Proposition 1.3**  $W \neg \neg l \Pi_1 \vdash i \neg \Pi_1$ .

**Proof** Let  $\alpha$  be a node of a Kripke model  $\mathcal{K} \Vdash W \neg \neg l \Pi_1$ ,  $\varphi(x, \overline{y})$  negation of a  $\Pi_1$ formula, and  $\overline{a} \in M_{\alpha}$  of the same arity as  $\overline{y}$ . To prove  $\alpha \Vdash I_x \varphi(x, \overline{a})$ , assume without

loss of generality that  $\alpha \Vdash \varphi(0, \overline{a})$ . It is enough to show that for every  $\beta \geq \alpha$ , there exists  $\delta \geq \beta$  such that,  $M_{\delta} \Vdash I_x \varphi(x, \overline{a})$ , since  $\neg \neg I_x \varphi(x, \overline{a}) \vdash I_x \varphi(x, \overline{a})$ . Fix  $\beta \geq \alpha$ . If  $\beta \Vdash \forall x \varphi(x, \overline{a})$ , then we may take  $\delta = \beta$ . Otherwise, by  $\beta \Vdash W \neg \neg l \Pi_1$ , there will exist  $\gamma \geq \beta$  such that, for some non-zero  $d \in M_{\gamma}, \gamma \Vdash \neg \varphi(d, \overline{a}) \land \forall z < d\varphi(z, \overline{a})$ . Clearly, such a node  $\delta$  has the desired property.  $\Box$ 

Corollary 1.4  $i\Pi_1 \equiv W \neg \neg l\Pi_1 \equiv W \neg \neg l \neg \Pi_1$ .

#### 2. Forcing and truth

For a class  $\Gamma$  of formulas and a Kripke structure  $\mathcal{K}$ ,  $\Vdash \Leftrightarrow_{\mathcal{K},\Gamma} \models$  (or just  $\Vdash \Leftrightarrow_{\Gamma} \models$  if  $\mathcal{K}$  is understood) means that for any node  $\alpha$  of  $\mathcal{K}$ , formula  $\varphi(\overline{x}, \overline{y}) \in \Gamma$  and  $\overline{a} \in M_{\alpha}$ , we have  $\alpha \Vdash \varphi(\overline{x}, \overline{a})$  if and only if  $M_{\alpha} \models \varphi(\overline{x}, \overline{a})$ .

**Lemma 2.1** For any Kripke structure  $\mathcal{K}$  and any  $m \ge 0$ , we have:

(i) If  $\Vdash \Leftrightarrow_{\Pi_m} \models$ , then  $\Vdash \Leftrightarrow_{\Sigma_{m+1}} \models$ .

(ii) If  $\Vdash \Leftrightarrow_{\Sigma_m} \models$  and  $\mathcal{K}$  is a  $\Sigma_m$ -elementary-extension model, then  $\mathcal{K} \Vdash PEM_{\Sigma_m}$ .

(iii) If  $\mathcal{K} \Vdash PEM_{\Sigma_m}$  is linear, then  $\Vdash \Leftrightarrow_{\Pi_m} \models$ .

**Proof** (i) and (ii) are straightforward.

(iii) Clearly for any  $\mathcal{K} \Vdash PEM_{\Delta_0}$ , we have  $\Vdash \Rightarrow_{\operatorname{Prenex}} \models$ . Conversely, assume  $\mathcal{K} \Vdash PEM_{\Sigma_{m+1}}$  is linear,  $\alpha$  is a node of  $\mathcal{K}$ ,  $\psi(\overline{x},\overline{a}) \in \Delta_0$  and  $\alpha \nvDash \forall x_{m+1} \exists x_m \cdots Qx_1 \psi(\overline{x},\overline{a})$ , where  $Q \in \{\forall, \exists\}$ . Using  $PEM_{\Sigma_{m+1}}$ , it suffices to show  $\alpha \Vdash \neg \neg \exists x_{m+1} \forall x_m \cdots Q^* x_1 \neg \psi(\overline{x},\overline{a})$ , where  $Q^*$  is the quantifier dual to Q. If not, there would exist  $\beta \geq \alpha$  such that  $\beta \Vdash \neg \exists x_{m+1} \forall x_m \cdots Q^* x_1 \neg \psi(\overline{x},\overline{a})$  and so by  $PEM_{\Sigma_m}$ ,  $\beta \Vdash \forall x_{m+1} \exists x_m \cdots Qx_1 \psi(\overline{x},\overline{a})$ . By  $\alpha \nvDash \forall x_{m+1} \exists x_m \cdots Qx_1 \psi(\overline{x},\overline{a})$ , there exists  $\gamma \geq \alpha$  and  $c \in M_{\gamma}$  such that  $\gamma \nvDash \exists x_m \cdots Qx_1 \psi(\overline{x},\overline{a})[x_{m+1}/c]$ and so by  $PEM_{\Sigma_m}$  again,  $\gamma \Vdash \neg \exists x_m \cdots Qx_1 \psi(\overline{x},\overline{a})[x_{m+1}/c]$ .

But then  $\delta = \max\{\beta, \gamma\}$  leads to a contradiction.  $\Box$ 

**Corollary 2.2** Let  $\mathcal{K} \Vdash PEM_{\Delta_0}$  be linear. Then the following are equivalent:

- (i)  $\Vdash \Leftrightarrow_{\Pi_m} \models$ .
- (ii)  $\mathcal{K}$  is a  $\Sigma_m$ -elementary-extension Kripke model.
- (iii)  $\mathcal{K} \Vdash PEM_{\Sigma_m}$ .

It is known that in intuitionistic predicate logic, unlike its classical counterpart, the prenex-normal form theorem does not hold. This is also the case for intuitionistic arithmetic. Indeed, it was proved, by Visser and Wehmeier, that iPNF is  $\Pi_2$ -conservative over  $i\Pi_2$ , were iPNF is the intuitionistic theory axiomatized by  $(PA^-)^i$  plus the induction scheme restricted to prenex formulas, see [W2, Thm. 3]. However, we have the following:

**Corollary 2.3** If  $\mathcal{K} \Vdash PEM_{\text{prenex}}$  is linear, then  $\mathcal{K} \Vdash PEM$ .

For a set T of sentences,  $T^i$  denotes its intuitionistical closure. In [Bus], the intuition-

istic theory of the class of T-normal Kripke structures is denoted  $\mathcal{H}(T)$ . Buss axiomatized  $\mathcal{H}(T)$  by the universal closures of all formulas of the form  $(\neg\theta)^{\varphi}$ , where  $\theta$  is semipositive (i.e. each implicational subformula of  $\theta$  has an atomic antecedent) and  $T \vdash_c \neg \theta$ . It was proved in [M, Cor. 1.2] that,  $T^i \in \operatorname{range}(\mathcal{H})$  iff  $T^i = \mathcal{H}(T)$ . As a corollary, no fragment of HA extending  $i\Pi_1$  belongs to the range of  $\mathcal{H}$ .

Burr's fragments  $\Phi_n$  of *HA* are defined as follows, see [Bur2, Sec. 7b]:

- (i)  $\Phi_0 = \Delta_0$ ,
- (ii)  $\Phi_1 = \Sigma_1$ ,

(iii) For  $n \ge 2$ ,  $\Phi_n$  consists of all formulas  $\forall x(B \to \exists yC)$ , where  $B \in \Phi_{n-1}$  and  $C \in \Phi_{n-2}$ .

Burr showed that these fragments can be considered as normal forms for the formulas of intuitionistic arithmetic. More precisely, he proved:

(i)  $I\Pi_n = I\Phi_n$  for  $n \ge 0$ ,

- (ii)  $\bigcup_{n \in \omega} \Phi_n = \text{Form}(L) \text{ (modulo equivalence in } i\Delta_0),$
- (iii)  $I\Pi_n$  and  $i\Phi_n$  prove the same  $\Pi_2$ -formulas for  $n \ge 0$ .

The following was proved by T. Polacik, see [P, lemma 1]:

**Fact 2.4** Fix  $n \ge 0$ . Let  $\mathcal{K} \Vdash PEM_{\Delta_0}$  be an  $\Sigma_n$ -elementary extension Kripke model. Then, for each  $\alpha \in \mathcal{K}$  and each  $\varphi \in \Phi_n$  we have:  $\alpha \Vdash \varphi$  if and only if  $M_{\alpha} \models \varphi$ .

**Proposition 2.5** For each  $n \ge 1$ , we have  $\mathcal{H}(I\Pi_n) \nsubseteq i\Phi_n$ .

**Proof** We construct a Kripke structure by putting a model of  $I\Pi_n$  above a  $\Sigma_n$ elementary substructure of it which is not a model of  $I\Pi_n$ , see [HP, P. 222-223] for the existence of such substructures. Using the above fact, it is easy to see that this Kripke model forces  $i\Phi_n$ . So we get a non- $I\Pi_n$ -normal Kripke model of  $i\Phi_n$ . On the other hand, as it was observed in [AM] (in the proof of 2.1 (iv)), any theory of the form  $\mathcal{H}(T)$  is closed under Friedman's translation and so by [W1], each finite Kripke model of it is  $\mathcal{H}(T)^c$ -normal. So, by [M, lemma 1.2], it must be T-normal.  $\Box$ 

Acknowlegements This research was supported by Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran.

## References

[AM] M. Ardeshir and Mojtaba Moniri, Intuitionistic Open Induction and Open Least Number Principle and the Buss Operator, Notre Dame J. Formal Logic 39 (1998), 212-220.

[Bur1] W. Burr, Fragments of Heyting Arithmetic, J. Symbolic Logic 65 (2000), 1223-1240.

- [Bur2] W. Burr, *Functionals in Set Theory and Arithmetic*, PhD Dissertation, Muenster University, Muenster, 1998.
- [Bus] S. Buss, Intuitionistic Validity in T-normal Kripke Structures, Ann. Pure Appl. Logic 59 (1993), 159-173.
- [HP] P. Hajek and P. Pudlak, Metamathematics of First-order Arithmetic, Springer-Verlag, Berlin, 1993.
- [MM] Morteza Moniri and Mojtaba Moniri, Some Weak Fragments of HA and Certain Closure Properties, J. Symbolic Logic, to appear.
  - [M] Morteza Moniri, *H*-theories, Fragments of HA and PA-normality, Arch. Math. Logic, to appear.
  - [P] T. Polacik, Partially-Elementary Extension Kripke Models and Burr's Hierachy, Bull. Sec. Logic Univ. Lodz 28 (1999), 207-214.
- [TD] A.S. Troelstra and D. van Dalen, *Constructivism in Mathematics*, vol. 1, North-Holland, Amsterdam, 1988.
- [W1] K.F. Wehmeier, Classical and Intuitionistic Models of Arithmetic, Notre Dame J. Formal Logic 37 (1996), 452-461.
- [W2] K.F. Wehmeier, Fragments of HA Based on  $\Sigma_1$ -Induction, Arch. Math. Logic 37 (1997), 37-49.